Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

نویسندگان

  • Florian Vollnhals
  • Martin Drost
  • Fan Tu
  • Esther Carrasco
  • Andreas Späth
  • Rainer H Fink
  • Hans-Peter Steinrück
  • Hubertus Marbach
چکیده

The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) is studied for two precursors: iron pentacarbonyl, Fe(CO)5, and cobalt tricarbonyl nitrosyl, Co(CO)3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM) and scanning transmission X-ray microscopy (STXM), including near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It has previously been shown that Fe(CO)5 decomposes autocatalytically on Fe seed layers (EBID) and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO)3NO and compare it to results obtained from Fe(CO)5. Co(CO)3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO)5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO)3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron Beam Induced Reactions of Adsorbed Cobalt Tricarbonyl Nitrosyl (Co(CO)3NO) Molecules

This study focuses on elucidating the bond breaking steps involved in the electron beam induced deposition (EBID) of nanostructures created from the organometallic precursor cobalt tricarbonyl nitrosyl (Co(CO)3NO) by studying the effect of 500 eV incident electrons on nanometer scale films of Co(CO)3NO. Experiments were performed under ultrahigh vacuum conditions, using a suite of surface analy...

متن کامل

Electron-Induced Chemistry of Cobalt Tricarbonyl Nitrosyl (Co(CO)3NO) in Liquid Helium Nanodroplets

Electron addition to cobalt tricarbonyl nitrosyl (Co(CO3NO) and its clusters has been explored in helium nanodroplets. Anions were formed by adding electrons with controlled energies, and reaction products were identified by mass spectrometry. Dissociative electron attachment (DEA) to the Co(CO)3NO monomer gave reaction products similar to those reported in earlier gas phase experiments. Howeve...

متن کامل

The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

Focused electron beam induced deposition (FEBID) is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to...

متن کامل

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

We report on the fabrication of carbon nanotubes (CNTs) at predefined positions and controlled morphology, for example, as individual nanotubes or as CNT forests. Electron beam induced deposition (EBID) with subsequent autocatalytic growth (AG) was applied to lithographically produce catalytically active seeds for the localized growth of CNTs via chemical vapor deposition (CVD). With the precur...

متن کامل

Electron induced reactions of surface adsorbed tungsten hexacarbonyl (W(CO)6).

Tungsten hexacarbonyl (W(CO)(6)) is frequently used as an organometallic precursor to create metal-containing nanostructures in electron beam induced deposition (EBID). However, the fundamental electron stimulated reactions responsible for both tungsten deposition and the incorporation of carbon and oxygen atom impurities remain unclear. To address this issue we have studied the effect of 500 e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014